Лекции 6.

Тема: Общая характеристика задач распознавания образов и их типы.

Под образом понимается структурированное описание изучаемого объекта или явления, представленное вектором *признаков*, каждый элемент которого представляет числовое *значение* одного из *признаков*, характеризующих соответствующий *объект*. Общая структура *системы распознавания* и этапы в процессе ее разработки показаны на рис. 1.

Рис. 1. Структура системы распознавания

Суть задачи распознавания - установить, обладают ли изучаемые объекты фиксированным конечным набором *признаков*, позволяющим отнести их к определенному классу.

Задачи распознавания имеют следующие характерные черты.

- 1. Это *информационные задачи*, состоящие из двух этапов: а) приведение исходных данных к виду, удобному для *распознавания*; б) собственно *распознавание* (указание принадлежности объекта определенному классу).
- 2. В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.
- 3. В этих задачах можно *оперировать набором прецедентов-примеров*, классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму *распознавания* для настройки на задачу в процессе обучения.
- 4. Для этих задач *трудно строить формальные теории и применять классические математические методы* (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов не соизмерим с затратами).
- 5. В этих задачах *возможна "плохая" информация* (информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная).

Целесообразно выделить следующие типы задач распознавания.

- 1. Задача распознавания отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем).
- 2. Задача автоматической классификации разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, обучение без учителя).
 - 3. Задача выбора информативного набора признаков при распознавании.
 - 4. Задача приведения исходных данных к виду, удобному для распознавания.
- 5. Динамическое *распознавание* и динамическая классификация задачи 1 и 2 для динамических объектов.
- 6. Задача прогнозирования это задачи 5, в которых решение должно относиться к некоторому моменту в будущем.

Основы теории анализа и распознавания изображений.

Пусть дано множество M объектов; на этом множестве существует разбиение на конечное число подмножеств (классов) Ω , $\mathbf{i} = \{1,\mathbf{m}\}$, $M = \bigcup \Omega_i (i=1..m)$. Объекты

 ω задаются значениями некоторых *признаков* x_j , j= {1,N}. Описание объекта $I(\omega) = (x_1(\omega), \dots, x_N(\omega))$ называют стандартным, если $x_j(\omega)$ принимает значение из множества допустимых значений.

Пусть задана *таблица обучения* (таблица 1). Задача *распознавания* состоит в том, чтобы для заданного объекта ω и набора классов Ω_1 , ..., Ω_m по обучающей информации в *таблице обучения* $I_0(\Omega_1\dots\Omega_m)$ о классах и описанию $I(\omega)$ вычислить предикаты:

$$P_i(\omega \in \Omega_i) = \{1(\omega \in \Omega_i), 0(\omega \in \Omega_i), (\omega \in \Omega_i)\},\$$

где $i = \{1, m\}, \Delta$ - неизвестно.

Таблица 1. Таблица обучения

Объект	П	Класс		
	X 1	Xj	$\mathbf{X}_{\mathbf{n}}$	KJIACC
$\omega 1$	α_{11}	α_{1j}	α_{1n}	Ω_1
		•••		
ω_{r_1}	r11	α_{r_1j}	α_{r_1n}	
/.2	0′ 1		O	0
ω_{r_k}	$lpha_{r_k1}$	$lpha_{r_k j}$	$\alpha_{r_k n}$	Ω_m
ω_{r_m}	$\alpha_{r_m 1}$	$\alpha_{r_m j}$	$\alpha_{r_m n}$	

Рассмотрим алгоритмы *распознавания*, основанные на вычислении оценок. В их основе лежит принцип прецедентности (в аналогичных ситуациях следует действовать аналогично).

Пусть задан полный набор *признаков* $\mathbf{x_1}$, ..., $\mathbf{x_N}$. Выделим систему подмножеств множества признаков $\mathbf{S_1}$, ..., $\mathbf{S_k}$. Удалим произвольный набор *признаков* из строк ω_1 , ω_2 , ..., ω_{rm} и обозначим полученные строки через $S\omega_1$, $S\omega_2$, ..., $S\omega_{rm}$, $S\omega'$.

Правило близости, позволяющее оценить похожесть строк $S\omega'$ и $S\omega_r$ состоит в следующем. Пусть "усеченные" строки содержат \mathbf{q} первых символов, то есть $S\omega_r=(a_1,\ldots,a_q)$ и $S\omega'=(b_1,\ldots,b_q)$. Заданы пороги ε_1 ... ε_q , δ . Строки $S\omega_r$ и $S\omega'$ считаются похожими, если выполняется не менее чем δ неравенств вида $|a_j-b_j|\leq \varepsilon_j, j=1,2,\ldots,q$.

Величины ε_1 ... ε_q , δ входят в качестве параметров в модель класса алгоритмов на основе оценок.

Пусть
$$\Gamma_i(\omega')$$
 - оценка объекта ω' по классу Ω_i .

Описания объектов $\{\omega'\}$, предъявленные для распознавания, переводятся в числовую матрицу оценок. Решение о том, к какому классу отнести объект, выносится на основе вычисления степени сходства распознавания объекта (строки) со строками, принадлежность которых к заданным классам известна.

Проиллюстрируем описанный *алгоритм распознавания* на примере. Задано 10 классов объектов (рис. 2a). Требуется определить *признаки таблицы обучения*, *пороги* и построить оценки близости для классов объектов, показанных на рис. 2б. Предлагаются следующие *признаки таблицы обучения*:

- х₁ количество вертикальных линий минимального размера;
- х2 количество горизонтальных линий;
- хз количество наклонных линий;

х4 - количество горизонтальных линий снизу объекта.

Рис. 2. Пример задачи по распознаванию

На рис. 4.3 приведена таблица обучения и пороги

$$\varepsilon_1 = 1, \varepsilon_2 = 1, \varepsilon_3 = 1, \varepsilon_4 = 1, \delta = 1.$$

Из этой таблицы видно, что неразличимость символов 6 и 9 привела к необходимости ввода еще одного *признака* х₄.

	X_1	X_2	X_3	X_4	
	4	2	0		0
	2	0	1		1
	1	2	1		2
	0	2	2		3
	0 3 2 2	1	0		4
	2	3	0		5
✓	2	2	1	1	6
	1	1	1		0123456789
	4	3	0		В
✓	2	2	1	0	9
	$\varepsilon_1 = 1$	ε ₂ =1	$\epsilon_3 = 1$	$\epsilon_4=1$	δ=1

Рис. 3. Таблица обучения для задачи по распознаванию

Теперь может быть построена таблица распознавания для объектов на рис. 5.26.

Объект	X 1	X 2	X 3	X 4	Результат <i>распознавания</i>
Объект 1	1	2	1		Цифра 2
Объект 2	3	3	0	1	Цифра 8 или 5
Объект 3	4	1	0		
Объект 4	4	2	0	1	

Читателю предлагается самостоятельно ответить на вопрос: что будет, если увеличить пороги ε_1 , ε_2 , ε_3 , ε_4 , δ ? Как изменится качество распознавания в данной задаче?

Отметим важную мысль, высказанную А. Шамисом: качество *распознавания* во многом зависит от того, насколько удачно создан *алфавит признаков*, придуманный разработчиками *системы*. Поэтому *признаки* должны быть инвариантны к ориентации, размеру и вариациям формы объектов.

Распознавание по методу аналогий.

Этот метод очень хорошо знаком студентам (знание решения аналогичной задачи помогает в решении текущей задачи).

Рассмотрим этот метод на примере задачи П. Уинстона по поиску геометрических аналогий, представленном на рис. 4. Среди фигур второго ряда требуется выбрать $X \in \{1,2,3,4,5\}$ такое, что A так соотносится с B, как C соотносится с X, и такое, которое лучше всего при этом подходит. Для решения задачи необходимо понять, в чем

разница между фигурами A и B (наличие/отсутствие жирной точки), и после этого ясно, что лучше всего для C подходит X=3.

Решение таких задач предполагает описание изображения и преобразования (отношения между фигурами на изображениях), а также описание изменения отдельных фигур, составление правил и оценка изменений.

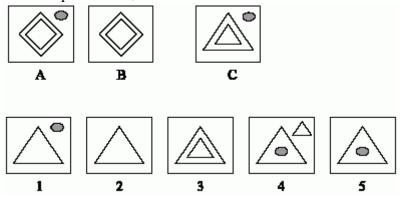


Рис. 4. Задача поиска геометрических аналогий

В качестве примера запишем три правила, показывающие, каким образом одно изображение (исходное) становится результирующим (рис. 5).

Правило 1 (исходное изображение): k выше m, k выше n, n внутри m

Правило 2 (результир. изображение): п слева т

Правило 3 (масшабирование, повороты):

k исчезло

m изменение масштаба 1:1, вращение 0^0

n изменение масштаба 1:2, вращение 0^0

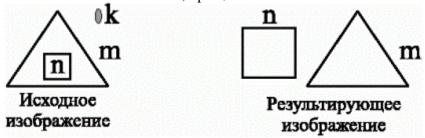


Рис. 5. Правила преобразования

Отметим важные моменты при таких преобразованиях. В исходном и результирующем изображениях допускаются отношения ВЫШЕ, ВНУТРИ, СЛЕВА, В результате преобразования изображение может стать МЕНЬШЕ, БОЛЬШЕ, испытать ПОВОРОТ или ВРАЩЕНИЕ, ОТРАЖЕНИЕ, УДАЛЕНИЕ, ДОБАВЛЕНИЕ. Написание правил лучше всего начинать с проведения диагональных линий через центры фигур. Лишние отношения (СПРАВА ОТ и СЛЕВА ОТ, ВЫШЕ и НИЖЕ, ИЗНУТРИ и СНАРУЖИ,) использовать не рекомендуется.

Теперь задачи распознавания мы можем решать достаточно просто, записав для отношений правила 1, 2, 3 и проведя сопоставление, например так, как это сделано для следующей задачи: найти X такое, что $A \Rightarrow B$, как $C \Rightarrow X$ (рис. 6).

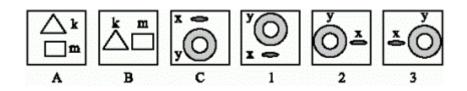


Рис. 6. Пример задачи распознавания по аналогии

```
        Правило 1
        Правило 3
        Результат

        A => В к выше m
        к слева m
        к, m масштаб 1:1 поворот 0°

        C => 1
        х выше y
        у выше х
        х, у масштаб 1:1 поворот 0°

        C => 2
        х выше y
        у слева х
        х, у масштаб 1:1 поворот 0°

        C => 3
        х выше y
        х слева у
        х, у масштаб 1:1 поворот 0°
        Сопоставление успешно
```

Дополнительно следует отметить, что разные виды преобразований могут иметь различные веса, например, исчезновению фигуры целесообразно назначить больший *вес*, чем преобразованию масштаба; а вращение фигуры может иметь меньший *вес*, чем отражение.

Методы распознавания по аналогии могут быть эффективнее, если используется обучение. Различают обучение с учителем, обучение по образцу (эталону) и др. виды обучения. Суть идеи такова. Программе распознавания предъявляется объект, например, арка. Программа создает внутреннюю модель:

```
(арка
(компонент1 (назначение (опора))
(тип (брусок)))
(компонент2 (назначение (опора))
(тип (брусок)))
(компонент3 (назначение (перекладина))
(тип (брусок))
(поддерживается (компонент1), (компонент2)))
```

После этого предъявляется другой *объект* и говорится, что это тоже арка. *Программа* вынуждена дополнить свою внутреннюю модель:

```
(арка
  (компонент1 (назначение (опора))
  (тип (брусок)))
  (компонент2 (назначение (опора))
  (тип (брусок)))
  (компонент3 (назначение (перекладина))
  (тип (брусок) или (клин))
  (поддерживается (компонент1), (компонент2)))
```

После такого обучения система распознавания будет узнавать в качестве арки как первый, так и второй объект.

Актуальные задачи распознавания.

Среди множества интересных задач по распознаванию (распознавание отпечатков пальцев, распознавание по радужной оболочке глаза, распознавание машиностроительных чертежей и т. д.) следует выделить задачу определения реальных координат заготовки и определения шероховатости обрабатываемой поверхности, рассмотренную в лекции 10. Другой актуальной задачей является распознавание машинописных и рукописных текстов в силу ее повседневной необходимости. Практическое значение задачи машинного чтения печатных и рукописных текстов определяется необходимостью представления, хранения и использования в электронном виде огромного количества накопленной и вновь создающейся текстовой информации. Кроме того, большое значение имеет оперативный ввод в информационные и управляющие системы информации с машиночитаемых бланков, содержащих как напечатанные, так и рукописные тексты. В связи с этим рассмотрим принципы и подход к распознаванию в задаче машинного чтения печатных и рукописных текстов.

Для решения данной задачи используются следующие основные принципы.

- 1. Принцип целостности распознаваемый объект рассматривается как единое целое, состоящее из структурных частей, связанных между собой пространственными отношениями.
- 2. Принцип двунаправленности создание модели ведется от изображения к модели и от модели к изображению.
- 3. Принцип предвидения заключается в формировании гипотезы о содержании изображения. Гипотеза возникает при взаимодействии процесса "сверху-вниз", разворачивающегося на основе модели среды, модели текущей ситуации и текущего результата восприятия, и процесса "снизу-вверх", основанного на непосредственном грубом признаковом восприятии.
- 4. Принцип целенаправленности, включающий *сегментацию* изображения и совместную интерпретацию его частей.
- 5. Принцип "не навреди" ничего не делать до распознавания и вне распознавания, то есть без "понимания".
 - 6. Принцип максимального использования модели проблемной среды.

Указанные принципы реализованы в пакете программ "Графит", в программах FineReader-рукопись и FormReader - для распознавания рукописных символов и, частично, в программе FineReader для распознавания печатных текстов. Входящая в FormReader программа чтения рукописных текстов была выпущена в 1998 году одновременно с системой ABBYY FineReader 4.0. Эта программа может читать все рукописные строчные и заглавные символы, допускает ограниченные соприкосновения символов между собой и с графическими линиями и обеспечивает поддержку 10 языков. Основное применение программы - распознавание и ввод информации с машиночитаемых бланков.

В системе ABBYY FormReader при распознавании рукописных текстов используются структурный, растровый, признаковый, дифференциальный и лингвистический уровни распознавания. Для более подробного освоения подходов к распознаванию машинописных и рукописных текстов в системе ABBYY FormReader читателю рекомендуется непосредственно ознакомиться с работой А. Шамиса, при этом знание основ машинной графики на уровне подразумевается.

Завершая этот раздел лекции, отметим особенности задачи зрительного восприятия роботов по сравнению с традиционными задачами *распознавания образов* и машинной обработки изображений:

- необходимость построения комплексного описания среды на основе учета значительной априорной информации (модели проблемной среды) в отличиие от традиционной задачи выделения фиксированных *признаков* или измерения отдельных параметров;
- необходимость анализа трехмерных сцен не только в плане анализа трехмерных объектов по их плоским проекциям, но и в плане определения объемных пространственных отношений;
- необходимость анализа изображений, включающих одновременно несколько произвольно расположенных объектов (в общем случае произвольной формы) в отличие от традиционной задачи, когда для распознавания предъявляется, как правило, один объект;
- необходимость анализировать реальную динамическую среду, а не статические изображения;
- отсутствие постоянной фиксированной задачи и необходимость оперативно решать возникающие по ходу дела задачи;
- необходимость следить за изменениями в среде, которые могут порождать новые оперативные задачи;
- необходимость организации системного процесса взаимодействия в реальном времени нескольких подсистем робота ("глаз-мозг", "глаз-мозг-рука").